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The distributions of ratios of random variables are of interest in many areas of the sciences. In this brief paper, we present the joint
probability density function (PDF) and PDF of maximum of ratios 𝜇
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for the cases where 𝑅
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, and
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are Rayleigh, Rician, Nakagami-𝑚, and Weibull distributed random variables. Random variables 𝑅

1
and 𝑅

2
, as well as random

variables 𝑟
1
and 𝑟

2
, are correlated. Ascertaining on the suitability of the Weibull distribution to describe fading in both indoor and

outdoor environments, special attention is dedicated to the case of Weibull random variables. For this case, analytical expressions
for the joint PDF, PDF of maximum, PDF of minimum, and product moments of arbitrary number of ratios 𝜇

𝑖
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/𝑟
𝑖
, 𝑖 = 1, . . . , 𝐿

are obtained. Random variables in numerator, 𝑅
𝑖
, as well as random variables in denominator, 𝑟

𝑖
, are exponentially correlated. To

the best of the authors’ knowledge, analytical expressions for the PDF of minimum and product moments of {𝜇
𝑖
}
𝐿

𝑖=1
are novel in

the open technical literature.The proposed mathematical analysis is complemented by various numerical results. An application of
presented theoretical results is illustrated with respect to performance assessment of wireless systems.

1. Introduction

Radio-wave propagation through wireless channels is a com-
plicated phenomenon characterized by fading which is the
result ofmultipath propagation.When a received signal enve-
lope experiences fading during transmission, it fluctuates
over time. Multivariate statistics is a useful mathematical
tool for modeling and analyzing wireless channels. There is
a very wide range of statistical models for fading channels
[1] which their accuracy and veracity depend on propagation
environment and communication scenario. Rayleigh, Rician,
Nakagami-𝑚, and Weibull are the most frequently applied
models in the open technical literature.

Fading can seriously degrade performance of wireless
communications systems. Techniques that can be used to
minimize the degradation effects due to fading have received

a great deal of research interest. Diversity combining [1],
which combines two or more replicas of the received signal,
is a practical and powerful technique that can be used to
alleviate the detrimental effects of fading and to improve the
performance of wireless communications systems without
increasing transmission power and bandwidth. Space diver-
sity [2], achieved by usingmultiple antennas at the receiver, is
the most common form of diversity. The most popular space
diversity techniques are selection combining (SC), equal-gain
combining (EGC), and maximal-ratio combining (MRC).

In digital contemporary communications systems, fading
channels are correlated due to insufficient antenna spacing
when diversity is applied in small terminals (e.g., hand-held
mobile terminals and compact base stations). Several spatial
correlation models have been proposed and used for the per-
formance analysis of various wireless systems, corresponding
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to specific modulation, detection, and diversity schemes [1].
Spatial exponential correlation model is one of the most fre-
quently used in performance analysis of wireless systemswith
multichannel reception [3–5]. The correlation matrix of this
model is described by∑

𝑖𝑗
≡ 𝜌
|𝑖−𝑗|, 𝑖, 𝑗 = 1, . . . , 𝐿, where 𝜌 (0 ≤

𝜌 < 1) is the correlation coefficient between adjacent chan-
nels [1, Equation (9.164)] and𝐿 is the number of channels.The
exponential correlationmodel corresponds to the scenario of
multichannel reception from equispaced diversity antennas
in which the correlation among the pairs of combined signals
decays as the spacing between the antennas increases.

The distribution of the ratio of random variables is
of interest in statistical analysis in biological and physical
sciences, econometrics, and ranking and selection [6]. It has
been studied by several authors especially when random
variables are independent and come from the same family
[7–10]. In [11, 12], the distribution of the ratio of correlated
random variables is considered.

The ratios of random variables are also of interest in ana-
lyzing wireless communications systems in fading environ-
ment [13–17]. Namely, the random variable in nominatormay
present desired signal envelope while the random variable
in denominator may present interference signal envelope.
Rayleigh, Rician, Nakagami-𝑚, andWeibull distributions are
included in our analysis. Having in mind that it is well
known that the assumption of independence among the input
diversity channels is not accurate for compact, hand-held,
mobile terminals and indoor base stationswith no sufficiently
separated antennas, random variables in nominator, as well
as random variables in denominator, are correlated. It shows
that results presented in the paper can be efficiently used in
analyzing realistic correlated fading channels.

2. On Two Ratios of Rayleigh, Rician, and
Nakagami-𝑚 Random Variables

In this section, the joint probability density function (PDF)
and PDF of maximum of two ratios of random variables 𝜇
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and |𝐽| is the Jacobian transformation given by
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The PDF expression of maximum of ratios of random
variables 𝜇max = max{𝜇

1
, 𝜇
2
} can be derived as
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In the analysis of wireless communications systems,
depending on the nature of the radio propagation environ-
ment, there are different models describing the statistical
behavior of the multipath fading envelope. In the rest of this
section, correlative Rayleigh, Rician, andNakagami-𝑚 fading
models are considered. The existence of correlation is the
real scenario in practical multiantennas wireless systems due
to insufficient antenna spacing. Since, this paper considers
spatial correlation—the correlation between appropriate pair
of receive antennas—all signals, regardless of their nature,
received by these antennas explore the same correlation
coefficient.

(a) Rayleigh Case. The Rayleigh distribution is frequently
used to model multipath fading with no direct line-of-sight
(LOS) path. The joint bivariate PDFs of correlated Rayleigh
distributed random variables 𝑅

𝑖
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𝑖
(𝑖 = 1, 2) are given by

[1, Equation (6.2)] as follows:
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where 𝐼
0
(⋅) is the modified Bessel function of the first kind

and zero order, 𝜌 is the correlation coefficient, and Ω
𝑑𝑖
and

Ω
𝑐𝑖
are the mean-square values of 𝑅

𝑖
and 𝑟

𝑖
, respectively.

Substituting (2) and (4) in (1) and using the infinite-series
representation of the modified Bessel function [18, Equation
(8.447/1)], integrals can be solvedwith the aid of [18, Equation
(3.478/1)]. Analytical expression for the joint PDF of 𝜇
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Substituting (5) in (3) and using [18, Equation (3.194/1)],
the PDF of maximum of two ratios of Rayleigh random
variables can be written as
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where
2
𝐹
1
(𝑎, 𝑏; 𝑐; 𝑑) is the Gauss hypergeometric function.

(b) Rician Case. The Rician distribution is often used to
model propagation paths consisting of one strong direct LOS
component and many random weaker components. In this
case, 𝑅

𝑖
and 𝑟

𝑖
(𝑖 = 1, 2) are distributed according to [15,

Equation (1)] as follows:
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where 𝐼
𝑛
(⋅) is the modified Bessel function of the first kind

and 𝑛th order, 𝜀
0
= 1, 𝜀
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is the Rician factor. The Rician distribution spans the range

from Rayleigh fading (𝐾 → 0) to no fading (𝐾 → ∞).
Following the same procedure as for the Rayleigh case, the
joint PDF of 𝜇
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becomes [17, Equation (6)] as follows:
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where 𝐸(𝑘, ℓ, 𝑚, 𝑛, 𝑝, 𝑞, 𝑠, 𝑤) ≡ 𝐸 is given by
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while the PDF of 𝜇max can be written as in [17, Eq. (11)] as
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(c) Nakagami-m Case. The Nakagami-𝑚 distribution has
gained widespread application in the modeling of physical
fading radio channels [19]. The primary justification of the
use of Nakagami-𝑚 fading model is its good fit to empirical
fading data. It is versatile and through its parameter 𝑚, we
can model signal fading conditions that range from severe
to moderate, to light fading, or no fading. It includes the
one-sided Gaussian distribution (𝑚 = 0.5) and the Rayleigh
distribution (𝑚 = 1) as special cases. In Nakagami-𝑚 fading
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dom variables can be obtained as

𝑝
𝜇
1
𝜇
2

(𝜇
1
, 𝜇
2
)

=
4(1 − 𝜌)

𝑚
1
+𝑚
2

Γ (𝑚
1
) Γ (𝑚

2
)

×

∞

∑

𝑘,𝑙=0

(𝜌
𝑘+𝑙

Γ
2
(𝑘 + 𝑙 + 𝑚

1
+ 𝑚
2
)

× (𝜇
1
𝜇
2
)
2(𝑘+𝑚

1
)−1

𝑚
2(𝑚
1
+𝑘)

1
𝑚
2(𝑚
2
+𝑙)

1

× (𝑘!𝑙!Γ (𝑘 + 𝑚
1
) Γ (𝑙 + 𝑚

2
) (Ω
𝑐1
Ω
𝑐2
)
𝑙+𝑚
2

×(Ω
𝑑1
Ω
𝑑2
)
𝑘+𝑚
1

𝑊
𝑘+𝑙+𝑚

1
+𝑚
2)
−1

) ,

(13)

while the PDF of maximum of ratios of Nakagami-𝑚 dis-
tributed random variables is

𝑝
𝜇max

(𝜇)

=
4(1 − 𝜌)

𝑚
1
+𝑚
2

Γ (𝑚
1
) Γ (𝑚

2
)

×

∞

∑

𝑘,𝑙=0

(𝜌
𝑘+𝑙

Γ
2
(𝑘 + 𝑙 + 𝑚

1
+ 𝑚
2
)

× 𝜇
4(𝑘+𝑚

1
)−1

(Ω
𝑐1
Ω
𝑐2
)
(𝑚
1
+𝑘−𝑚

2
−𝑙)/2

× 𝑚
2(𝑚
1
+𝑘)

1
𝑚
(𝑚
2
+𝑙−𝑚

1
−𝑘)

2

× (𝑘!𝑙!Γ (𝑘 + 𝑚
1
) Γ (𝑙 + 𝑚

2
)

× (𝑘 + 𝑚
1
) (Ω
𝑑1
Ω
𝑑2
)
(𝑚
1
+𝑘)

×(
𝜇
2
𝑚
1

√Ω
𝑑1
Ω
𝑑2

+
𝑚
2

√Ω
𝑐1
Ω
𝑐2

)

𝑘+𝑙+𝑚
1
+𝑚
2

)

−1

)

×
2
𝐹
1
(𝑘 + 𝑙 + 𝑚

1
+ 𝑚
2
, 𝑚
1
+ 𝑘; 𝑘 + 𝑚

1
+ 1;

−𝜇
2
𝑚
1
√Ω
𝑐1
Ω
𝑐2
/Ω
𝑑1
Ω
𝑑2

𝑚
2

) .

(14)
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The above presented results can be efficiently used for
analyzing wireless communications systems in fading envi-
ronment. Namely, the joint bivariate PDF of ratios of ran-
dom variables is necessary for performance analysis of dual
diversity combining schemes. In that case, 𝜇

𝑖
denotes signal-

to-interference ratio, Ω
𝑑𝑖

and Ω
𝑐𝑖
are the average powers

of desired and interference signals at 𝑖th diversity branch,
respectively, and 𝜌 is the correlation between branches.
Varying the Rician and Nakagami-𝑚 parameter, it is possible
to simulate fading with different severity degrees. Having in
mind that in interference-limited environment SC diversity
receiver selects and outputs the branch with the highest
signal-to-interference ratio, the PDF of𝜇max presents the PDF
of signal-to-interference ratio at the SC output. This expres-
sion can be used to study important performance measures
such as the average bit error probability and channel capacity.

3. On the Ratios of Weibull Distributed
Random Variables

The Weibull distribution exhibits an excellent fit to experi-
mental fading channel measurements, for both indoor [20]
and outdoor [21, 22] environments. It is the reason why
Weibull distribution paved its way to wireless communica-
tions applications. The fact that the diversity receiver with
larger number of branches shows better performance gives an
idea to investigate the statistics of arbitrary number of ratios.
In this section, the joint PDF, product moments, and PDF
of maximum and minimum of arbitrary number of ratios
of Weibull distributed random variables are presented. To
the best of the authors’ knowledge, analytical expressions for
product moments and PDF of minimum of ratios of Weibull
random variables are novel in the open technical literature.

(a) The Joint PDF. The joint bivariate PDFs of correlated
Weibull distributed random variables 𝑅

𝑖
and 𝑟

𝑖
(𝑖 = 1, 2) are

given by [23, Equation (11)] as follows:

𝑝
𝑅
1
𝑅
2

(𝑅
1
, 𝑅
2
) =

𝛽
1
𝛽
2
𝑅
𝛽
1
−1

1
𝑅
𝛽
2
−1

2

Ω
𝑑1
Ω
𝑑2
(1 − 𝜌)

× exp[− 1

1 − 𝜌
(
𝑅
𝛽
1

1

Ω
𝑑1

+
𝑅
𝛽
2

2

Ω
𝑑2

)]

× 𝐼
0
[

2√𝜌𝑅
𝛽
1
/2

1
𝑅
𝛽
2
/2

2

(1 − 𝜌)√Ω
𝑑1
Ω
𝑑2

] ,

𝑝
𝑟
1
𝑟
2

(𝑟
1
, 𝑟
2
) =

𝛽
1
𝛽
2
𝑟
𝛽
1
−1

1
𝑟
𝛽
2
−1

2

Ω
𝑐1
Ω
𝑐2
(1 − 𝜌)

× exp[− 1

1 − 𝜌
(
𝑟
𝛽
1

1

Ω
𝑐1

+
𝑟
𝛽
2

2

Ω
𝑐2

)]

× 𝐼
0
[

2√𝜌 𝑟
𝛽
1
/2

1
𝑟
𝛽
2
/2

2

(1 − 𝜌)√Ω
𝑐1
Ω
𝑐2

] ,

(15)

while the joint multivariate PDFs of Weibull distributed
random variables 𝑅

𝑖
and 𝑟

𝑖
, 𝑖 = 1, . . . , 𝐿, with exponential

correlation can be expressed as [23, Equation (22)] as follows:

𝑝
𝑅
1
⋅⋅⋅𝑅
𝐿

(𝑅
1
, . . . , 𝑅

𝐿
)

=
1

(1 − 𝜌)
𝐿−1

𝐿

∏

𝑖=1

𝛽
𝑖
𝑅
𝛽
𝑖
−1

𝑖

Ω
𝑑𝑖

× exp{− 1

1 − 𝜌
[
𝑅
𝛽
1

1

Ω
𝑑1

+
𝑅
𝛽
𝐿

𝐿

Ω
𝑑𝐿

+ (1 + 𝜌)

𝐿−1

∑

𝑖=2

𝑅
𝛽
𝑖

𝑖

Ω
𝑑𝑖

]}

×

𝐿−1

∏

𝑖=1

𝐼
0
[

2√𝜌 𝑅
𝛽
𝑖
/2

𝑖
𝑅
𝛽
𝑖+1
/2

𝑖+1

(1 − 𝜌) 𝐿√Ω
𝑑1
⋅ ⋅ ⋅ Ω

𝑑𝐿

] ,

𝑝
𝑟
1
⋅⋅⋅𝑟
𝐿

(𝑟
1
, . . . , 𝑟

𝐿
)

=
1

(1 − 𝜌)
𝐿−1

𝐿

∏

𝑖=1

𝛽
𝑖
𝑟
𝛽
𝑖
−1

𝑖

Ω
𝑐𝑖

× exp{− 1

1 − 𝜌
[
𝑟
𝛽
1

1

Ω
𝑐1

+
𝑟
𝛽
𝐿

𝐿

Ω
𝑐𝐿

+ (1 + 𝜌)

𝐿−1

∑

𝑖=2

𝑟
𝛽
𝑖

𝑖

Ω
𝑐𝑖

]}

×

𝐿−1

∏

𝑖=1

𝐼
0
[

2√𝜌 𝑟
𝛽
𝑖
/2

𝑖
𝑟
𝛽
𝑖+1
/2

𝑖+1

(1 − 𝜌) 𝐿√Ω
𝑐1
⋅ ⋅ ⋅ Ω

𝑐𝐿

] ,

(16)

where 𝛽
𝑖
is the Weibull parameter. Weibull parameter

expresses the fading severity (𝛽
𝑖
> 0). As it increases, the

severity of fading decreases, while for 𝛽
𝑖
= 2, the Weibull

distribution reduces to the Rayleigh distribution. The joint
PDF of ratios of Weibull random variables, 𝜇

𝑖
= 𝑅

𝑖
/𝑟
𝑖
, 𝑖 =

1, . . . , 𝐿, can be obtained as

𝑝
𝜇
1
⋅⋅⋅𝜇
𝐿

(𝜇
1
, . . . , 𝜇

𝐿
)

= ∫

∞

0

⋅ ⋅ ⋅ ∫

∞

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿-fold

|𝐽| 𝑝
𝑅
1
⋅⋅⋅𝑅
𝐿

(𝜇
1
𝑟
1
, . . . , 𝜇

𝐿
𝑟
𝐿
)

× 𝑝
𝑟
1
⋅⋅⋅𝑟
𝐿

(𝑟
1
, . . . , 𝑟

𝐿
) 𝑑𝑟
1
⋅ ⋅ ⋅ 𝑑𝑟

𝐿
,

(17)

where |𝐽| is the Jacobian transformation given by

|𝐽| =



𝑑𝑅
1

𝑑𝜇
1

. . .
𝑑𝑅
1

𝑑𝜇
𝐿

...
𝑑𝑅
𝐿

𝑑𝜇
1

𝑑𝑅
𝐿

𝑑𝜇
𝐿



=

𝐿

∏

𝑖=1

𝑟
𝑖
. (18)

Substituting the adequate joint PDFs of 𝑅
𝑖
and 𝑟

𝑖
in (17)

and using the infinite-series representation of the modified
Bessel function, after integrations, the joint bivariate PDF of
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𝜇
1
and 𝜇

2
can be written in the following form [14, Equation

(7)]:

𝑝
𝜇
1
𝜇
2

(𝜇
1
, 𝜇
2
)

= (1 − 𝜌)
2

𝛽
1
𝛽
2

×

∞

∑

𝑘,ℓ=0

𝜌
𝑘+ℓ

𝜇
(1+𝑘)𝛽

1
−1

1
𝜇
(1+𝑘)𝛽

2
−1

2
Γ
2
(2 + 𝑘 + ℓ)

(Ω
𝑑1
Ω
𝑑2
)
1+𝑘

(Ω
𝑐1
Ω
𝑐2
)
1+ℓ

(𝑘!ℓ!)
2

× ((
𝜇
𝛽
1

1

Ω
𝑑1

+
1

Ω
𝑐1

)(
𝜇
𝛽
2

2

Ω
𝑑2

+
1

Ω
𝑐2

))

−(2+𝑘+ℓ)

,

(19)

while the joint multivariate PDF of {𝜇
𝑖
}
𝐿

𝑖=1
can be written as

in [16, Equation (4)] as

𝑝
𝜇
1
⋅⋅⋅𝜇
𝐿

(𝜇
1
, . . . , 𝜇

𝐿
)

= (1 − 𝜌)
2

×

𝐿

∏

𝑖=1

𝛽
𝑖

∞

∑

𝑘
1
,...,𝑘
𝐿−1
,ℓ
1
,...,ℓ
𝐿−1
=0

𝜌
∑
𝐿−1

𝑖=1
(𝑘
𝑖
+ℓ
𝑖
)

(1 + 𝜌)
∑
𝐿−1

𝑖=2
(2+𝑘
𝑖
+𝑘
𝑖−1
+ℓ
𝑖
+ℓ
𝑖−1
)

×(𝜇
(1+𝑘
1
)𝛽
1
−1

1
𝜇
(1+𝑘
𝐿−1
)𝛽
𝐿
−1

𝐿
Γ (2 + 𝑘

1
+ ℓ
1
)

× Γ (2 + 𝑘
𝐿−1

+ ℓ
𝐿−1

)

× (

𝐿

∏

𝑖=1

(Ω
1+(2/𝐿)∑

𝐿−1

𝑗=1
𝑘
𝑗

𝑑𝑖
Ω
1+(2/𝐿)∑

𝐿−1

𝑗=1
ℓ
𝑗

𝑐𝑖
)

× (
𝜇
𝛽
1

1

Ω
𝑑1

+
1

Ω
𝑐1

)

2+𝑘
1
+ℓ
1

×(
𝜇
𝛽
𝐿

𝐿

Ω
𝑑𝐿

+
1

Ω
𝑐𝐿

)

2+𝑘
𝐿−1
+ℓ
𝐿−1
𝐿−1

∏

𝑖=1

(𝑘
𝑖
!ℓ
𝑖
!)
2

)

−1

)

×

𝐿−1

∏

𝑖=2

[

[

𝜇
𝛽
𝑖
(1+𝑘
𝑖
+𝑘
𝑖−1
)−1

𝑖
(
𝜇
𝛽
𝑖

𝑖

Ω
𝑑𝑖

+
1

Ω
𝑐𝑖

)

−(2+𝑘
𝑖
+𝑘
𝑖−1
+ℓ
𝑖
+ℓ
𝑖−1
)

× Γ (2 + 𝑘
𝑖
+ 𝑘
𝑖−1

+ ℓ
𝑖
+ ℓ
𝑖−1

) ]

]

.

(20)

(b) Product Moments. Product moments are also important
in wireless communications systems because they are a useful

statistical tool to characterize a distribution. The (∑𝐿
𝑖=1

𝑛
𝑖
)th-

order moment of the product of {𝜇
𝑖
}
𝐿

𝑖=1
can be derived as

𝜀⟨

𝐿

∏

𝑖=1

𝜇
𝑛
𝑖

𝑖
⟩

= ∫

∞

0

⋅ ⋅ ⋅ ∫

∞

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐿-fold

(

𝐿

∏

𝑖=1

𝜇
𝑛
𝑖

𝑖
)𝑝
𝜇
1
⋅⋅⋅𝜇
𝐿

(𝜇
1
, . . . , 𝜇

𝐿
) 𝑑𝜇
1
⋅ ⋅ ⋅ 𝑑𝜇

𝐿
.

(21)

Substituting the adequate joint PDF of ratios of Weibull
distributed random variables in (21) and using [18, Equation
(3.241/4)], for 𝑛

𝑖
/𝛽
𝑖
< 1, 𝑖 = 1, . . . , 𝐿, productmoments of two

and multiple ratios of Weibull random variables are

𝜀 ⟨𝜇
𝑛
1

1
𝜇
𝑛
2

2
⟩ = 𝑈

∞

∑

𝑘,ℓ=0

𝜌
𝑘+ℓ

(𝑘!ℓ!)
2
Γ(1 + 𝑘 +

𝑛
1

𝛽
1

)Γ(1 + 𝑘 +
𝑛
2

𝛽
2

)

× Γ(1 + ℓ −
𝑛
1

𝛽
1

)Γ(1 + ℓ −
𝑛
2

𝛽
2

) ,

(22)

where 𝑈 = (1 − 𝜌)
2
(Ω
𝑑1
/Ω
𝑐1
)
𝑛
1
/𝛽
1(Ω
𝑑2
/Ω
𝑐2
)
𝑛
2
/𝛽
2 and

𝜀⟨

𝐿

∏

𝑖=1

𝜇
𝑛
𝑖

𝑖
⟩

= (1 − 𝜌)
2

×

∞

∑

𝑘
1
,...,𝑘
𝐿−1
,ℓ
1
,...,ℓ
𝐿−1
=0

(𝜌
∑
𝐿−1

𝑖=1
(𝑘
𝑖
+ℓ
𝑖
)
Ω
𝑘
1
−(2/𝐿)∑

𝐿−1

𝑖=1
𝑘
𝑖
+(𝑛
1
/𝛽
1
)

𝑑1

× Ω
ℓ
1
−(2/𝐿)∑

𝐿−1

𝑖=1
ℓ
𝑖
−(𝑛
1
/𝛽
1
)

𝑐1

×((1 − 𝜌)
∑
𝐿−1

𝑖=2
(2+𝑘
𝑖
+𝑘
𝑖−1
+ℓ
𝑖
+ℓ
𝑖−1
)

)

−1

)

×
Ω
𝑘
𝐿−1
−(2/𝐿)∑

𝐿−1

𝑖=1
𝑘
𝑖
+(𝑛
𝐿
/𝛽
𝐿
)

𝑑𝐿
Ω
ℓ
𝐿−1
−(2/𝐿)∑

𝐿−1

𝑖=1
ℓ
𝑖
−(𝑛
𝐿
/𝛽
𝐿
)

𝑐𝐿

∏
𝐿−1

𝑖=1
(𝑘
𝑖
!ℓ
𝑖
!)
2

× Γ(1 + 𝑘
1
+
𝑛
1

𝛽
1

)Γ(1 + 𝑘
𝐿−1

+
𝑛
𝐿

𝛽
𝐿

)

× Γ(1 + ℓ
1
−
𝑛
1

𝛽
1

)Γ(1 + ℓ
𝐿−1

−
𝑛
𝐿

𝛽
𝐿

)
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×

𝐿−1

∏

𝑖=2

{Ω
𝑘
𝑖
+𝑘
𝑖−1
−(2/𝐿)∑

𝐿−1

𝑗=1
𝑘
𝑗
+(𝑛
𝑖
/𝛽
𝑖
)

𝑑𝑖
Ω
ℓ
𝑖
+ℓ
𝑖−1
−(2/𝐿)∑

𝐿−1

𝑗=1
ℓ
𝑗
−(𝑛
𝑖
/𝛽
𝑖
)

𝑐𝑖

× Γ(1 + 𝑘
𝑖
+ 𝑘
𝑖−1

+
𝑛
𝑖

𝛽
𝑖

)

× Γ(1 + ℓ
𝑖
+ ℓ
𝑖−1

−
𝑛
𝑖

𝛽
𝑖

)} ,

(23)

respectively.

(c) PDF of Maximum. The PDF expression of maximum of
ratios of random variables, 𝜇max = max{𝜇

1
, 𝜇
2
, . . . , 𝜇

𝐿
}, can

be derived as

𝑝
𝜇max

(𝜇)

= ∬

𝜇

0

⋅ ⋅ ⋅ ∫

𝜇

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝐿−1)-fold

𝑝
𝜇
1
𝜇
2
⋅⋅⋅𝜇
𝐿

(𝜇, 𝜇
2
, . . . , 𝜇

𝐿
) 𝑑𝜇
2
𝑑𝜇
3
⋅ ⋅ ⋅ 𝑑𝜇

𝐿

+∬

𝜇

0

⋅ ⋅ ⋅ ∫

𝜇

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝐿−1)-fold

𝑝
𝜇
1
𝜇
2
⋅⋅⋅𝜇
𝐿

(𝜇
1
, 𝜇, . . . , 𝜇

𝐿
) 𝑑𝜇
1
𝑑𝜇
3
⋅ ⋅ ⋅ 𝑑𝜇

𝐿

...

+∬

𝜇

0

⋅ ⋅ ⋅ ∫

𝜇

0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝐿−1)-fold

𝑝
𝜇
1
𝜇
2
⋅⋅⋅𝜇
𝐿

(𝜇
1
, 𝜇
2
, . . . , 𝜇) 𝑑𝜇

1
𝑑𝜇
2
⋅ ⋅ ⋅ 𝑑𝜇

𝐿−1
.

(24)

Substituting the joint PDF of {𝜇
𝑖
}
𝐿

𝑖=1
in the previous

expression and after integrations, the PDFs of maximum of
two and multiple ratios of Weibull random variables can
be written, respectively, as in [14, Equation(11)] and [16,
Equation(12)] as follows:

𝑝
𝜇max

(𝜇)

= (1 − 𝜌)
2

∞

∑

𝑘,ℓ=0

𝜌
𝑘+ℓ

Γ
2
(2 + 𝑘 + ℓ) 𝜇

(1+𝑘)(𝛽1+𝛽2)−1

(1 + 𝑘) (𝑘!ℓ!)
2

(
Ω
𝑐1
Ω
𝑐2

Ω
𝑑1
Ω
𝑑2

)

1+𝑘

×{
𝛽
1

(1 + ((Ω
𝑐1
/Ω
𝑑1
) 𝜇𝛽1))

2+𝑘+ℓ

×
2
𝐹
1
(2 + 𝑘 + ℓ, 1 + 𝑘, 2 + 𝑘; −

Ω
𝑐2

Ω
𝑑2

𝜇
𝛽2)

+
𝛽
2

(1 + ((Ω
𝑐2
/Ω
𝑑2
) 𝜇𝛽2))

2+𝑘+ℓ

×
2
𝐹
1
(2 + 𝑘 + ℓ, 1 + 𝑘, 2 + 𝑘; −

Ω
𝑐1

Ω
𝑑1

𝜇
𝛽1)} ,

(25)

𝑝
𝜇max
(𝜇)

= (1 − 𝜌)
2

×

∞

∑

𝑘1,𝑘2,...,𝑘𝐿−1,ℓ1,ℓ2,...,ℓ𝐿−1=0

Ω
1+𝑘1+ℓ1−(2/𝐿)∑

𝐿−1

𝑖=1
ℓ𝑖

𝑐1
Ω
1+𝑘𝐿−1+ℓ𝐿−1−(2/𝐿)∑

𝐿−1

𝑖=1
ℓ𝑖

𝑐𝐿

(1 + 𝜌)
∑
𝐿−1

𝑖=2
(2+𝑘𝑖+𝑘𝑖−1+ℓ𝑖+ℓ𝑖−1)

×
Γ (2 + 𝑘

1
+ ℓ
1
) Γ (2 + 𝑘

𝐿−1
+ ℓ
𝐿−1
)

(∏
𝐿

𝑖=1
Ω
𝑑𝑖
)
1+(2/𝐿)∑

𝐿−1

𝑖=1
𝑘𝑖
∏
𝐿−1

𝑖=0
(𝑘
𝑖
!ℓ
𝑖
!)
2

×𝜌
∑
𝐿−1

𝑖=1
(𝑘𝑖+ℓ𝑖)𝜇

(1+𝑘1)𝛽1+(1+𝑘𝐿−1)𝛽𝐿+∑
𝐿−1

𝑖=2
(1+𝑘𝑖+𝑘𝑖−1)𝛽𝑖−1

×

𝐿−1

∏

𝑖=2

{Ω
1+𝑘𝑖+𝑘𝑖−1+ℓ𝑖+ℓ𝑖−1−(2/𝐿)∑

𝐿−1

𝑖=1
ℓ𝑖

𝑐𝑖

×Γ (2 + 𝑘
𝑖
+ 𝑘
𝑖−1
+ ℓ
𝑖
+ ℓ
𝑖−1
) }𝑍(𝜇) ,

(26)
respectively, where
𝑍 (𝜇)

= (
𝛽
1

(1 + 𝑘
𝐿−1

) (1 + ((Ω
𝑐1
/Ω
𝑑1
) 𝜇𝛽1))

2+𝑘
1
+ℓ
1

×
2
𝐹
1
(2 + 𝑘

𝐿−1
+ ℓ
𝐿−1

, 1 + 𝑘
𝐿−1

; 2 + 𝑘
𝐿−1

; −
Ω
𝑐𝐿

Ω
𝑑𝐿

𝜇
𝛽
𝐿)

+
𝛽
𝐿

(1 + 𝑘
1
) (1 + ((Ω

𝑐𝐿
/Ω
𝑑𝐿
) 𝜇𝛽𝐿))

2+𝑘
𝐿−1
+ℓ
𝐿−1

×
2
𝐹
1
(2 + 𝑘

1
+ ℓ
1
, 1 + 𝑘

1
; 2 + 𝑘

1
; −

Ω
𝑐1

Ω
𝑑1

𝜇
𝛽
1))

×

𝐿−1

∏

𝑖=2

(
2𝐹1 (2 + 𝑘

𝑖
+ 𝑘
𝑖−1

+ ℓ
𝑖
+ ℓ
𝑖−1

, 1 + 𝑘
𝑖
+ 𝑘
𝑖−1

;

2 + 𝑘
𝑖
+ 𝑘
𝑖−1

; −
Ω
𝑐𝑖

Ω
𝑑𝑖

𝜇
𝛽
𝑖)

× (1 + 𝑘
𝑖
+ 𝑘
𝑖−1

)
−1

)

+ (
2
𝐹
1
(2 + 𝑘

1
+ ℓ
1
, 1 + 𝑘

1
; 2 + 𝑘

1
; −

Ω
𝑐1

Ω
𝑑1

𝜇
𝛽
1)

×
2
𝐹
1
(2 + 𝑘

𝐿−1
+ ℓ
𝐿−1

, 1 + 𝑘
𝐿−1

; 2 + 𝑘
𝐿−1

;

−
Ω
𝑐𝐿

Ω
𝑑𝐿

𝜇
𝛽
𝐿)

× ((1 + 𝑘
1
) (1 + 𝑘

𝐿−1
))
−1

)

×

𝐿−1

∑

𝑗=2

𝛽
𝑗

(1 + ((Ω
𝑐𝑗
/Ω
𝑑𝑗
) 𝜇
𝛽
𝑗))
2+𝑘
𝑗
+𝑘
𝑗−1
+ℓ
𝑗
+ℓ
𝑗−1

×

𝐿−1

∏

𝑖=2;𝑖 ̸= 𝑗

[
2
𝐹
1
(2 + 𝑘

𝑖
+ 𝑘
𝑖−1

+ ℓ
𝑖
+ ℓ
𝑖−1

, 1 + 𝑘
𝑖
+ 𝑘
𝑖−1

;

2 + 𝑘
𝑖
+ 𝑘
𝑖−1

; −
Ω
𝑐𝑖

Ω
𝑑𝑖

𝜇
𝛽
𝑖)

×(1 + 𝑘
𝑖
+ 𝑘
𝑖−1

)
−1

] .

(27)
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Figure 1: Probability density function of maximum of ratios of
Weibull random variables for 𝜌 = 0.2, Ω

𝑑𝑖
= 0.8, Ω

𝑐𝑖
= 0.2, and

𝛽
𝑖
= 2.5, 𝑖 = 1, . . . , 𝐿.

Figure 1 illustrates the PDF of maximum of two, three,
and four ratios of random variables.

(d) PDF of Minimum.Theminimum of ratios of Weibull ran-
dom variables, 𝜇min = min{𝜇

1
, 𝜇
2
, . . . , 𝜇

𝐿
}, can be obtained

by

𝑝
𝜇min

(𝜇)

= ∬

∞

𝜇

⋅ ⋅ ⋅ ∫

∞

𝜇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝐿−1)-fold

𝑝
𝜇
1
𝜇
2
⋅⋅⋅𝜇
𝐿

(𝜇, 𝜇
2
, . . . , 𝜇

𝐿
) 𝑑𝜇
2
𝑑𝜇
3
⋅ ⋅ ⋅ 𝑑𝜇

𝐿

+∬

∞

𝜇

⋅ ⋅ ⋅ ∫

∞

𝜇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝐿−1)-fold

𝑝
𝜇
1
𝜇
2
⋅⋅⋅𝜇
𝐿

(𝜇
1
, 𝜇, . . . , 𝜇

𝐿
) 𝑑𝜇
1
𝑑𝜇
3
⋅ ⋅ ⋅ 𝜇

𝐿

...

+∬

∞

𝜇

⋅ ⋅ ⋅ ∫

∞

𝜇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝐿−1)-fold

𝑝
𝜇
1
𝜇
2
⋅⋅⋅𝜇
𝐿

(𝜇
1
, 𝜇
2
, . . . , 𝜇) 𝑑𝜇

1
𝑑𝜇
2
⋅ ⋅ ⋅ 𝑑𝜇

𝐿−1
.

(28)

Substituting the adequate joint PDF in (28) and using
[18, Equation (3.194/2)], with (𝜇

𝛽
𝑖/Ω
𝑑𝑖
) + (1/Ω

𝑐𝑖
) = Φ

𝑖
,

Ω
𝑑𝑖
/Ω
𝑐𝑖
𝜇
𝛽
𝑖 = 𝜑

𝑖
, 𝑖 = 1, 2, . . . , 𝐿, the PDF of minimum of two

ratios of random variables becomes

𝑝
𝜇min

(𝜇) = (1 − 𝜌)
2

×

∞

∑

𝑘,ℓ=0

𝜌
𝑘+ℓ

Γ
2
(2 + 𝑘 + ℓ)

(Ω
𝑑1
Ω
𝑑2
)
1+𝑘

(Ω
𝑐1
Ω
𝑐2
)
1+ℓ

(𝑘!ℓ!)
2
(1 + ℓ)

× {𝛽
1
Ω
2+𝑘+ℓ

𝑑2

𝜇
(1+𝑘)𝛽

1
−(1+ℓ)𝛽

2
−1

Φ
2+𝑘+ℓ

1

×
2
𝐹
1
(2 + 𝑘 + ℓ, 1 + ℓ; 2 + ℓ; −𝜑

2
)

+ 𝛽
2
Ω
2+𝑘+ℓ

𝑑1

𝜇
(1+𝑘)𝛽

2
−(1+ℓ)𝛽

1
−1

Φ
2+𝑘+ℓ

2

×
2
𝐹
1
(2 + 𝑘 + ℓ, 1 + ℓ; 2 + ℓ; −𝜑

1
) } ,

(29)

and finally, the PDF ofminimumofmultiple ratios of random
variables can be expressed in a more complicated form as
follows:

𝑝
𝜇min

(𝜇)

= (1 − 𝜌)
2

×

∞

∑

𝑘
1
,𝑘
2
,...,𝑘
𝐿−1
,ℓ
1
,ℓ
2
,...,ℓ
𝐿−1
=0

(𝜌
∑
𝐿−1

𝑖=1
(𝑘
𝑖
+ℓ
𝑖
)
(1+𝜌)

−∑
𝐿−1

𝑖=2
(2+𝑘
𝑖
+𝑘
𝑖−1
+ℓ
𝑖
+ℓ
𝑖−1
)

× ((

𝐿

∏

𝑖=1

Ω
𝑑𝑖
)

1+(2/𝐿)∑
𝐿−1

𝑖=1
𝑘
𝑖

× (

𝐿

∏

𝑖=1

Ω
𝑐𝑖
)

1+(2/𝐿)∑
𝐿−1

𝑖=1
ℓ
𝑖

)

−1

)

×(Γ(2+𝑘
1
+ℓ
1
) Γ (2+𝑘

𝐿−1
+ℓ
𝐿−1

)

×

𝐿−1

∏

𝑖=2

Γ (2 + 𝑘
𝑖
+ 𝑘
𝑖−1

+ ℓ
𝑖
+ ℓ
𝑖−1

)

× (

𝐿−1

∏

𝑖=1

(𝑘
𝑖
!ℓ
𝑖
!)
2

)

−1

)

× {

𝐿−1

∏

𝑖=2

(
Ω
2+𝑘
𝑖
+𝑘
𝑖−1
+ℓ
𝑖
+ℓ
𝑖−1

𝑑𝑖

1 + ℓ
𝑖
+ ℓ
𝑖−1

2
𝐹
1

× (2 + 𝑘
𝑖
+ 𝑘
𝑖−1

+ ℓ
𝑖
+ ℓ
𝑖−1

,

1 + ℓ
𝑖
+ ℓ
𝑖−1

; 2 + ℓ
𝑖
+ ℓ
𝑖−1

; −𝜑
𝑖
))

× (
𝛽
1
Ω
2+𝑘
𝐿−1
+ℓ
𝐿−1

𝑑𝐿
𝜇
(1+𝑘
1
)𝛽
1
−∑
𝐿−1

𝑖=2
(1+ℓ
𝑖
+ℓ
𝑖−1
)𝛽
𝑖
−(1+ℓ

𝐿−1
)𝛽
𝐿
−1

(1 + ℓ
𝐿−1

)Φ
2+𝑘
1
+ℓ
1

1

×
2
𝐹
1
(2 + 𝑘

𝐿−1
+ ℓ
𝐿−1

, 1 + ℓ
𝐿−1

; 2 + ℓ
𝐿−1

; −𝜑
𝐿
)
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+
𝛽
𝐿
Ω
2+𝑘
1
+ℓ
1

𝑑1
𝜇
(1+𝑘
𝐿−1
)𝛽
𝐿
−∑
𝐿−1

𝑖=2
(1+ℓ
𝑖
+ℓ
𝑖−1
)𝛽
𝑖
−(1+ℓ

1
)𝛽
1
−1

(1 + ℓ
1
)Φ
2+𝑘
𝐿−1
+ℓ
𝐿−1

𝐿

×
2
𝐹
1
(2 + 𝑘

1
+ ℓ
1
, 1 + ℓ

1
; 2 + ℓ

1
; −𝜑
1
))

+
2
𝐹
1
(2 + 𝑘

1
+ ℓ
1
, 1 + ℓ

1
; 2 + ℓ

1
; −𝜑
1
)

×
2𝐹1 (2 + 𝑘

𝐿−1
+ ℓ
𝐿−1

; 1 + ℓ
𝐿−1

; 2 + ℓ
𝐿−1

; −𝜑
𝐿
)

×
Ω
2+𝑘
1
+ℓ
1

𝑑1
Ω
2+𝑘
𝐿−1
+ℓ
𝐿−1

𝑑𝐿

(1 + ℓ
1
) (1 + ℓ

𝐿−1
)

×

𝐿−1

∑
𝑖=2

[
𝛽
𝑖

Φ
2+𝑘
𝑖
+𝑘
𝑖−1
+ℓ
𝑖
+ℓ
𝑖−1

𝑖

×

𝐿−1

∏

𝑗=2,𝑗 ̸= 𝑖

(

Ω
2+𝑘
𝑗
+𝑘
𝑗−1
+ℓ
𝑗
+ℓ
𝑗−1

𝑑𝑗

1 + ℓ
𝑗
+ ℓ
𝑗−1

×
2𝐹1 (2+𝑘𝑗+𝑘𝑗−1+ℓ𝑗+ℓ𝑗−1,

1+ℓ
𝑗
+ℓ
𝑗−1

; 2+ℓ
𝑗
+ℓ
𝑗−1

;−𝜑
𝑗
))

×𝜇
(1+𝑘
𝑖
+𝑘
𝑖−1
)𝛽
𝑖
−(1+ℓ
1
)𝛽
1
−(1+ℓ
𝐿−1
)𝛽
𝐿
−∑
𝐿−1

𝑗=2,𝑗 ̸= 𝑖
(1+ℓ
𝑗
+ℓ
𝑗−1
)𝛽
𝑗
−1
]} .

(30)

The PDF of minimum of ratios of random variables is
important for analyzing multihop relayed communication
systems in which the source terminal communicates with
the destination terminal through a number of relay terminals
[24]. In that case, 𝜇

𝑖
is signal-to-interference ratio, Ω

𝑑𝑖
and

Ω
𝑐𝑖
are the average signal desired and interference powers

at 𝑖th terminal input, respectively, and 𝜌 is the correlation
between two successive terminals (in the case of independent
terminals, which is the real scenario in practice, correlation
coefficient tends to be zero). Figure 2 illustrates the PDF of
minimum of two, three, and four ratios of random variables.

The main problem in the infinite-series expressions can
be their convergence. Expressions presented in the paper
converge rapidly, and thus they can be efficiently used. As
an illustrative example, the number of terms needed to be
summed in expressions for PDF of minimum of ratios of
Weibull random variables is shown in Table 1. It is evident
that the number of terms depends strongly on the correlation
coefficient.

4. Conclusion

The distributions of ratios of random variables, 𝜇
𝑖
= 𝑅

𝑖
/𝑟
𝑖
,

𝑖 = 1, . . . , 𝐿, are of interest in many areas of science. In this
paper, expressions for the joint PDF and PDF of maximum of
two ratios of Rayleigh, Rician, and Nakagami-𝑚 distributed
random variables have been presented. Motivated by the
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Figure 2: Probability density function of minimum of ratios of
Weibull random variables for 𝜌 = 0.2, Ω

𝑑𝑖
= 0.8, Ω

𝑐𝑖
= 0.2, and

𝛽
𝑖
= 2.5, 𝑖 = 1, . . . , 𝐿.

Table 1: Number of terms needed to be summed to achieve accuracy
at the 4th digit of expressions for PDF of minimum of ratios of
Weibull random variables for Ω

𝑑𝑖
= 0.8, Ω

𝑐𝑖
= 0.2, 𝛽

𝑖
= 2.5,

𝑖 = 1, . . . , 𝐿.

𝜇 = 0.5 𝜇 = 1 𝜇 = 2

𝐿 = 2, 𝜌 = 0.2 7 5 5

𝐿 = 2, 𝜌 = 0.6 17 15 13

𝐿 = 3, 𝜌 = 0.2 8 6 5

𝐿 = 3, 𝜌 = 0.6 18 16 16

fact that Weibull distribution exhibits an excellent fit to
experimental fading channelmeasurements, special attention
is dedicated to the case of ratios ofWeibull random variables.
For this case, expressions for the joint PDF, productmoments,
PDF ofmaximum, and PDFofminimumof arbitrary number
of ratios of Weibull distributed random variables have been
obtained. An application of these results for the wireless
communications community has also been described.
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Jakovljević, “Performance analysis of system with selection
combining over correlatedWeibull fading channels in the pres-
ence of cochannel interference,” AEU—International Journal of
Electronics and Communications, vol. 62, pp. 695–700, 2008.
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